Regulation of the Photosynthesis Rhythm in Euglena gracilis
Author(s) -
Thomas A. Lonergan,
Malcolm Sargent
Publication year - 1979
Publication title -
plant physiology
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 3.554
H-Index - 312
eISSN - 1532-2548
pISSN - 0032-0889
DOI - 10.1104/pp.64.1.99
Subject(s) - euglena gracilis , photosynthesis , photosystem , photosystem ii , circadian rhythm , euglena , photosystem i , chloroplast , biology , chlorophyll , chlorophyll a , light intensity , chemistry , biophysics , dcmu , botany , photochemistry , biochemistry , physics , neuroscience , gene , optics
Rhythmic changes in the light reactions of Euglena gracilis have been found which help to explain the basic reactions effected in the circadian rhythm of O(2) evolution. Diurnal changes in the slope of light intensity plots indicated that the maximal rate of photosynthesis changed throughout the circadian cycle. No evidence was obtained consistent with the premise that changes in chlorophyll content, as measured by total chlorophyll or chlorophyll a/b ratio, or photosynthetic unit size are responsible for this rhythim.The rate of light-induced electron flow through the entire electron chain (H(2)O to methyl viologen) was rhythmic both in whole cells and in isolated chloroplasts, and the highest rate of electron flow coincided with the highest rate of O(2) evolution. The individual activities of photosystem I (reduced from 2,6-dichlorophenol-indophenol to methyl viologen) and photosystem II (H(2)O to 2,6-dichlorophenol-indophenol) did not, however, change significantly with time of day, suggesting that the coordination of the two photosystems may be the site of circadian control. Evidence consistent with this concept was obtained from studies of low temperature emission from systems I and II following preillumination with system I or II light.
Accelerating Research
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom
Address
John Eccles HouseRobert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom