Effect of Temperature on Water and Ion Transport in Soybean and Broccoli Systems
Author(s) -
Albert H. Markhart,
Edwin L. Fiscus,
Aubrey W. Naylor,
Paul J. Kramer
Publication year - 1979
Publication title -
plant physiology
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 3.554
H-Index - 312
eISSN - 1532-2548
pISSN - 0032-0889
DOI - 10.1104/pp.64.1.83
Subject(s) - ion , chemistry , agronomy , biology , organic chemistry
Steady-state flow rates and exudate osmotic potentials were measured from complete root systems from warm- (28/23 C) or cold-(17/11 C) grown soybean or broccoli (Brassica oleracea) plants at various pressures or different temperatures.In warm-grown soybean roots systems, a break occurred at 14.7 C in the Arrhenius plot of total flow at constant pressure. When plants were grown at lower temperatures, the break point shifted to 8 C. Broccoli, a chilling-resistant species, showed no break for the temperature range used, but cooler growth temperatures decreased the activation energy for water flow through the root system from 18 kilocalories per mole to 9 kilocalories per mole. In both broccoli and soybean, cold-grown plants had lower exudate potentials and greater flow rates at low hydrostatic pressures than the warm-grown plants.These observations indicate that the rate-limiting site for passive water transport is a membrane which may be modified as the plant acclimates to varying growth temperatures. An additional part of the acclimation process is an increase in activity of root ion pumps.
Accelerating Research
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom
Address
John Eccles HouseRobert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom