z-logo
open-access-imgOpen Access
Carbon Dioxide Fixation by Lupin Root Nodules
Author(s) -
William A. Laing,
John T. Christeller,
W.D. Sutton
Publication year - 1979
Publication title -
plant physiology
Language(s) - Uncategorized
Resource type - Journals
SCImago Journal Rank - 3.554
H-Index - 312
eISSN - 1532-2548
pISSN - 0032-0889
DOI - 10.1104/pp.63.3.450
Subject(s) - carbon dioxide , carbon fixation , root nodule , fixation (population genetics) , nitrogen fixation , chemistry , agronomy , biology , botany , biochemistry , ecology , nitrogen , gene , organic chemistry
Labeling studies using detached lupin (Lupinus angustifolius) nodules showed that over times of less than 3 minutes, label from [3,4-(14)C]glucose was incorporated into amino acids, predominantly aspartic acid, to a much greater extent than into organic acids. Only a slight preferential incorporation was observed with [1-(14)C]- and [6-(14)C]glucose, while with [U-(14)C]-glucose more label was incorporated into organic acids than into amino acids at all labeling times. These results are consistent with a scheme whereby the "carbon skeletons" for amino acid synthesis are provided by the phosphoenolpyruvate carboxylase reaction.A comparison of (14)CO(2) release from nodules supplied with [1-(14)C]- and [6-(14)C]glucose indicated that the oxidative pentose phosphate pathway accounted for less than 6% of glucose metabolism. Several enzymes of the oxidative pentose phosphate and glycolytic pathways were assayed in vitro using the 12,000g supernatant fraction from nodule homogenates. In all cases, the specific activities were adequate to account for the calculated in vivo fluxes.Three out of four diverse treatments that inhibited nodule nitrogen fixation also inhibited nodule CO(2) fixation, and in the case of the fourth treatment, replacement of N(2) with He, it was shown that the normal entry of label from exogenous (14)CO(2) into the nodule amino acid pool was strongly inhibited.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom