Comparison of the Molecular Weights of Proteins Synthesized by Isolated Chloroplasts with Those Which Appear during Greening in Zea mays
Author(s) -
Alice E. Grebanier,
Katherine E. Steinback,
Lawrence Bogorad
Publication year - 1979
Publication title -
plant physiology
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 3.554
H-Index - 312
eISSN - 1532-2548
pISSN - 0032-0889
DOI - 10.1104/pp.63.3.436
Subject(s) - chloroplast , greening , thylakoid , biochemistry , biology , plastid , molecular mass , gene , enzyme , ecology
The proteins of prolamellar bodies of etioplasts and of thylakoid membranes of greening and mature chloroplasts from Zea mays were separated by sodium dodecyl sulfate-polyacrylamide gel electrophoresis. Three classes of proteins were distinguished: those present in etioplasts and disappearing during greening, those absent in etioplasts and appearing during greening, and those present in both etioplasts and chloroplasts. The largest number of proteins belonged to this last class.The molecular weights of chloroplast thylakoid proteins were compared to the molecular weights of the membrane-associated proteins synthesized by isolated, mature chloroplasts. Thirteen of the 15 to 20 membrane-bound proteins made by isolated chloroplasts corresponded in size to proteins present in chloroplasts. Most of the 13 are present in both etioplasts and chloroplasts although a few were the same size as proteins which increase during greening. Production of most of the membrane proteins made in the plastids is not stringently regulated by light in vivo. The polypeptide subunits of the light-harvesting pigment-protein complex, the most abundant proteins of the chloroplast thylakoids, were absent from etioplasts. They were not synthesized by isolated chloroplasts.
Accelerating Research
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom
Address
John Eccles HouseRobert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom