z-logo
open-access-imgOpen Access
Breakdown of Ribulose Bisphosphate Carboxylase and Change in Proteolytic Activity during Dark-induced Senescence of Wheat Seedlings
Author(s) -
Ver A. Wittenbach
Publication year - 1978
Publication title -
plant physiology
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 3.554
H-Index - 312
eISSN - 1532-2548
pISSN - 0032-0889
DOI - 10.1104/pp.62.4.604
Subject(s) - senescence , pyruvate carboxylase , ribulose 1,5 bisphosphate , photosynthesis , rubisco , chlorophyll , biochemistry , biology , proteolytic enzymes , proteolysis , chemistry , enzyme , botany , microbiology and biotechnology
When 8-day-old wheat seedlings (Triticum aestivum L. var. Chris) are placed in the dark the fully expanded primary leaves undergo the normal changes associated with senescence, for example, loss of chlorophyll, soluble protein, and photosynthetic capacity (Wittenbach 1977 Plant Physiol. 59: 1039-1042). Senescence in this leaf is completely reversible when plants are transferred to the light during the first 2 days, but thereafter it becomes an irreversible process. During the reversible stage of senescence the loss of ribulose bisphosphate carboxylase (RuBPCase) quantitated immunochemically, accounted for 80% of the total loss of soluble protein. There was no significant change in RuBPCase activity per milligram of antibody-recognized carboxylase during this stage despite an apparent decline in specific activity on a milligram of soluble protein basis. With the onset of the irreversible stage of senescence there was a rapid decline in activity per milligram of carboxylase, suggesting a loss of active sites. There was no increase in total proteolytic activity during the reversible stage of senescence despite the loss of carboxylase, indicating that this initial loss was not due to an increase in total activity. An 80% increase in proteolytic activity was correlated with the onset of the irreversible stage and the rapid decline in RuBPCase activity per milligram of carboxylase. Delaying senescence with zeatin reduced the rate of loss of carboxylase and delayed both the onset of the irreversible stage and the increase in proteolytic activity to the same degree, suggesting that these events are closely related. The main proteinases present in wheat and responsible for the increase in activity are the thiol proteinases. These proteinases have a high affinity for RuBPCase, exhibiting an apparent K(m) at 38 C of 1.8 x 10(-7)m. The K(m) for casein was 1.1 x 10(-6)m. If casein is representative of noncarboxylase protein, then the higher affinity for carboxylase may provide an explanation for its apparent preferential loss during the reversible stage of senescence.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom