Initial Organic Products of Assimilation of [13N]Ammonium and [13N]Nitrate by Tobacco Cells Cultured on Different Sources of Nitrogen
Author(s) -
Thomas A. Skokut,
C. Peter Wölk,
Joseph Thomas,
John C. Meeks,
Paul W. Shaffer,
W.S. Chien
Publication year - 1978
Publication title -
plant physiology
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 3.554
H-Index - 312
eISSN - 1532-2548
pISSN - 0032-0889
DOI - 10.1104/pp.62.2.299
Subject(s) - glutamate synthase , glutamine synthetase , azaserine , nitrogen assimilation , glutamine , glutamate dehydrogenase , ammonium , nicotiana tabacum , biochemistry , glutamate receptor , biology , ammonia , alanine , chemistry , amino acid , enzyme , organic chemistry , gene , receptor
Glutamine is the first major organic product of assimilation of (13)NH(4) (+) by tobacco (Nicotiana tabacum L. cv. Xanthi) cells cultured on nitrate, urea, or ammonium succinate as the sole source of nitrogen, and of (13)NO(3) (-) by tobacco cells cultured on nitrate. The percentage of organic (13)N in glutamate, and subsequently, alanine, increases with increasing periods of assimilation. (13)NO(3) (-), used for the first time in a study of assimilation of nitrogen, was purified by new preparative techniques. During pulse-chase experiments, there is a decrease in the percentage of (13)N in glutamine, and a concomitant increase in the percentage of (13)N in glutamate and alanine. Methionine sulfoximine inhibits the incorporation of (13)N from (13)NH(4) (+) into glutamine more extensively than it inhibits the incorporation of (13)N into glutamate, with cells grown on any of the three sources of nitrogen. Azaserine inhibits glutamate synthesis extensively when (13)NH(4) (+) is fed to cells cultured on nitrate. These results indicate that the major route for assimilation of (13)NH(4) (+) is the glutamine synthetase-glutamate synthase pathway, and that glutamate dehydrogenase also plays a role, but a minor one. Methionine sulfoximine inhibits the incorporation of (13)N from (13)NO(3) (-) into glutamate more strongly than it inhibits the incorporation of (13)N into glutamine, suggesting that the assimilation of (13)NH(4) (+) derived from (13)NO(3) (-) may be mediated solely by the glutamine synthetase-glutamate synthase pathway.
Accelerating Research
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom
Address
John Eccles HouseRobert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom