Malate and Dihydroxyacetone Phosphate-dependent Nitrate Reduction in Spinach Leaf Protoplasts
Author(s) -
C.K.M. Rathnam
Publication year - 1978
Publication title -
plant physiology
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 3.554
H-Index - 312
eISSN - 1532-2548
pISSN - 0032-0889
DOI - 10.1104/pp.62.2.220
Subject(s) - dihydroxyacetone phosphate , dhap , spinach , spinacia , nitrate , dihydroxyacetone , biochemistry , glyceric acid , phosphate , biology , chloroplast , chemistry , enzyme , organic chemistry , gene , glycerol , catalysis
Isolated spinach (Spinacia oleracea L. var. Bloomsdale) leaf protoplasts reduced nitrate at rates of 9 micromoles per milligram chlorophyll per hour in light with a 3- to 4-fold stimulation in the presence of HCO(3) (-). A similar stimulation of nitrate reduction in the absence of CO(2) fixation was obtained by the addition of malate, oxaloacetate (OAA), phospho-3-glyceric acid (PGA), or dihydroxyacetone phosphate (DHAP). Stimulation by malate and DHAP was light-independent, while the PGA and OAA effect was light-dependent. Nitrate reduction was found to be coupled to the cytoplasmic oxidation of DHAP or malate. The PGA/DHAP and OAA/malate shuttle across the chloroplast envelope has been demonstrated to support CO(2) fixation and/or nitrate reduction. The leaf protoplasts readily assimilated nitrate into amino-N in a stoichiometric relationship.
Accelerating Research
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom
Address
John Eccles HouseRobert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom