Activation of Chloroplast NADP-linked Glyceraldehyde-3-Phosphate Dehydrogenase by the Ferredoxin/Thioredoxin System
Author(s) -
Ricardo A. Wolosiuk,
Bob B. Buchanan
Publication year - 1978
Publication title -
plant physiology
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 3.554
H-Index - 312
eISSN - 1532-2548
pISSN - 0032-0889
DOI - 10.1104/pp.61.4.669
Subject(s) - ferredoxin , ferredoxin thioredoxin reductase , glyceraldehyde 3 phosphate dehydrogenase , chloroplast , dehydrogenase , thioredoxin , biochemistry , glyceraldehyde , chemistry , biology , enzyme , gene , thioredoxin reductase
NADP-glyceraldehyde-3-P dehydrogenase of spinach (Spinacia oleracea) chloroplasts was activated by thioredoxin that was reduced either photochemically with ferredoxin and ferredoxin-thioredoxin reductase or chemically with dithiothreitol. The activation process that was observed with the soluble protein fraction from chloroplasts and with the purified regulatory form of the enzyme was slow relative to the rate of catalysis. The NAD-linked glyceraldehyde-3-P dehydrogenase activity that is also present in chloroplasts and in the purified enzyme preparation was not affected by reduced thioredoxin.When activated by dithiothreitol-reduced thioredoxin, the regulatory form of NADP-glyceraldehyde-3-P dehydrogenase was partly deactivated by oxidized glutathione. The enzyme activated by photochemically reduced thioredoxin was not appreciably affected by oxidized glutathione. The results suggest that although it resembles other regulatory enzymes in its requirements for light-dependent activation by the ferredoxin/thioredoxin system, NADP-glyceraldehyde-3-P dehydrogenase differs in its mode of deactivation and in its capacity for activation by enzyme effectors independently of thioredoxin.
Accelerating Research
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom
Address
John Eccles HouseRobert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom