Oxaloacetate as the Source of Carbon Dioxide for Photosynthesis in Bundle Sheath Cells of the C4 Species Panicum maximum
Author(s) -
Thomas B. Ray,
Clanton C. Black
Publication year - 1977
Publication title -
plant physiology
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 3.554
H-Index - 312
eISSN - 1532-2548
pISSN - 0032-0889
DOI - 10.1104/pp.60.2.193
Subject(s) - c4 photosynthesis , panicum , photosynthesis , carbon dioxide , bundle , carbon source , botany , vascular bundle , chemistry , biology , materials science , ecology , biochemistry , composite material
3-Mercaptopicolinic acid (3-MPA), an inhibitor of phosphoenolpyruvate carboxykinase, was employed to study the role of organic acid decarboxylation during C(4) photosynthesis. Treatment of detached Panicum maximum leaves with 5 mm 3-MPA inhibited photosynthesis 70 to 75%. Oxygen was found to have no effect on the degree of inhibition. The postillumination (14)CO(2) burst associated with P. maximum photosynthesis was almost abolished by 5 mm 3-MPA. The turnover rates of malate and aspartate during C(4) photosynthesis were severely reduced as well as the rates of formation of C(3) cycle intermediates in P. maximum leaves treated with 3-MPA. These results are interpreted as direct evidence for the fixation of CO(2), arising from the decarboxylation of oxaloacetate, by the C(3) cycle in bundle sheath cells of P. maximum leaves.
Accelerating Research
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom
Address
John Eccles HouseRobert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom