Semipermeable Membrane System for Subjecting Plants to Water Stress
Author(s) -
David T. Tingey,
Cynthia Stockwell
Publication year - 1977
Publication title -
plant physiology
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 3.554
H-Index - 312
eISSN - 1532-2548
pISSN - 0032-0889
DOI - 10.1104/pp.60.1.58
Subject(s) - semipermeable membrane , vermiculite , phaseolus , polyethylene glycol , membrane , peg ratio , water stress , chemistry , osmotic shock , root system , botany , horticulture , biology , biochemistry , finance , gene , economics
A system was evaluated for growing plants at reproducible levels of water stress. Beans (Phaseolus vulgaris L.) were grown in vermiculite, transferred to a semipermeable membrane system that encased the root-vermiculite mass, and then placed into nutrient solutions to which various amounts of polyethylene glycol (PEG) 20M were added to control solution water potential. The membrane (Spectrapor 1) had a minimum molecular weight cutoff that excluded the PEG 20M. The plants equilibrated with the nutrient solution within 1 to 4 days, and exhibited normal diurnal water relations. Use of the semipermeable membrane system to induce water stress reduces many of the problems associated with hydroponic media.
Accelerating Research
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom
Address
John Eccles HouseRobert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom