z-logo
open-access-imgOpen Access
Pyruvate Dehydrogenase Complex from Higher Plant Mitochondria and Proplastids: Kinetics
Author(s) -
Paul M. Thompson,
E. Ellen Reid,
C. Richard Lyttle,
David T. Dennis
Publication year - 1977
Publication title -
plant physiology
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 3.554
H-Index - 312
eISSN - 1532-2548
pISSN - 0032-0889
DOI - 10.1104/pp.59.5.849
Subject(s) - uncompetitive inhibitor , pyruvate dehydrogenase complex , non competitive inhibition , nad+ kinase , product inhibition , biochemistry , pyruvate decarboxylation , pyruvate dehydrogenase phosphatase , substrate (aquarium) , kinetics , biology , enzyme , pisum , stereochemistry , chemistry , ecology , physics , quantum mechanics
A steady-state kinetic analysis has been performed on the pyruvate dehydrogenase complex from pea (Pisum sativum L.) mitochondria and castor bean (Ricinus communis L.) proplastids. Substrate interaction kinetics for all substrates gave parallel lines consistent with a multisite ping-pong mechanism. Product inhibition studies showed uncompetitive inhibition between acetyl-CoA and pyruvate and competitive inhibition between NADH and NAD(+), both of which are also consistent with this mechanism. In the mitochondrial complex, acetyl-CoA showed noncompetitive inhibition versus CoA which suggests that the intermediate complex is kinetically important in the lipoamide transacetylase component of this complex. In contrast, the proplastid complex showed competitive inhibition in this interaction. NADH is a noncompetitive inhibitor versus CoA in both complexes indicating that these complexes, like the mammalian complex, may have protein-protein interactions between the second and third enzymes of the complex. Since NADH also shows noncompetitive inhibition versus pyruvate, this interaction may extend to all components of the complex. Acetyl-CoA shows noncompetitive inhibition versus NAD(+) which may also be a result of interaction between the second and third enzymes of the complex. The limiting Michaelis constants for substrates and the inhibitor constants for both complexes were determined.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom