z-logo
open-access-imgOpen Access
Regulation of Senescence in Carnation (Dianthus caryophyllus) by Ethylene
Author(s) -
Shimon Mayak,
Yoash Vaadia,
David R. Dilley
Publication year - 1977
Publication title -
plant physiology
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 3.554
H-Index - 312
eISSN - 1532-2548
pISSN - 0032-0889
DOI - 10.1104/pp.59.4.591
Subject(s) - carnation , dianthus , senescence , ethylene , caryophyllaceae , biology , botany , horticulture , microbiology and biotechnology , biochemistry , catalysis
Carnation (Dianthus caryophyllus) flowers were exposed to 2 mul/l ethylene and examined at intervals to determine the time course of wilting, decrease in water uptake, and increase in ionic leakage in response to ethylene. A rapid decrease in water uptake was observed about 4 hours after initiating treatment with ethylene. This was followed by wilting (in-rolling of petals) about 2 hours later. Carbon dioxide inhibited the decline in water uptake and wilting and this is typical of most ethylene-induced responses. Ethylene did not affect closure of stomates. Ethylene enhanced ionic leakage, as measured by efflux of (36)Cl from the vacuole. This was judged to coincide with the decrease in water uptake. Gassing flowers with propylene initiated autocatalytic ethylene production within 2.4 hours. Since the increase in ethylene production by carnations preceded the increase in ionic leakage and the decline in water uptake by several hours, it is apparent that the change in ionic leakage does not lead to the initial increase in ethylene production as reported (Hanson and Kende 1975 Plant Physiol 55:663-669) in morning glory but may explain the autocatalytic phase of ethylene production.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom