Roles of Extensibility and Turgor in Gibberellin- and Dark-stimulated Growth
Author(s) -
David A. Stuart,
Russell L. Jones
Publication year - 1977
Publication title -
plant physiology
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 3.554
H-Index - 312
eISSN - 1532-2548
pISSN - 0032-0889
DOI - 10.1104/pp.59.1.61
Subject(s) - hypocotyl , turgor pressure , elongation , gibberellin , darkness , biophysics , lactuca , chemistry , stimulation , phytochrome , botany , biochemistry , biology , red light , materials science , ultimate tensile strength , endocrinology , metallurgy
The elongation response elicited by incubating excised hypocotyl sections of lettuce (Lactuca sativa L.) in light in gibberellin (GA) can be enhanced by the addition of Cl(-), Br(-), and NO(3) (-) salts of K(+) and Na(+). Sections incubated in light in the absence of GA do not elongate in response to the addition of salts. In contrast, excised hypocotyls incubated in darkness elongate equally in both GA and water, and their elongation can also be enhanced by KCl treatment. Growth stimulation by the salts of K(+) and Na(+) occurs optimally at 10 mm and the magnitude of the response is proportional to the duration of salt treatment. Although the growth of sections incubated in light in the absence of GA is not enhanced by various salts of K(+) and Na(+), the concentration of these cations exceeds that in GA-treated sections. In dark-grown tissue, uptake of K(+) also occurs in both GA- and H(2)O-treated sections incubated in 10 mm KCl. Since increased osmotic potential resulting from cation uptake does not correlate with growth stimulation resulting from salt treatments, we conclude that increased cell turgor is not the principal driving force for growth in hypocotyl sections. Changes in the extensibility of GA-treated, light-grown tissue and dark-grown tissue incubated with and without GA correlate with the increased growth rate of these sections. Incubation of sections in KCl results only in changes in water potential of sections without having a significant effect on extensibility. When changes in water potential are accompanied by increased extensibility, however, a marked increase in growth rate is observed.
Accelerating Research
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom
Address
John Eccles HouseRobert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom