z-logo
open-access-imgOpen Access
Effects of Inorganic Salts on Tissue Permeability
Author(s) -
B. W. Poovaiah,
A. C. Leopold
Publication year - 1976
Publication title -
plant physiology
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 3.554
H-Index - 312
eISSN - 1532-2548
pISSN - 0032-0889
DOI - 10.1104/pp.58.2.182
Subject(s) - biophysics , chemistry , permeability (electromagnetism) , membrane , leakage (economics) , salt (chemistry) , botany , biochemistry , biology , organic chemistry , economics , macroeconomics
Inorganic solutes are shown to alter the permeability of root and leaf tissues. Experiments with beet root tissues reveal that CaCl(2) decreases leakage of betacyanin from the tissue, that (NH(4))(2)SO(4) increases leakage, and that each salt can relieve the effects of the other. A comparison of cations and anions shows a range of effects with the various solutes. Experiments with Rumex obtusifolius L. leaf discs reveal that whereas CaCl(2) defers the development of senescence, (NH(4))(2)SO(4) hastens senescence and increases the leakage of materials out of the leaf discs. The solute effect on Rumex obtusifolius L. is prevented by gibberellin. CaCl(2) can relieve the (NH(4))(2)SO(4) effect. The results are interpreted as indicating that the inorganic solutes may serve to alter the permeability of membranes through alterations of interactions between water and macromolecules in the tissues; the interpretation is consistent with the evidence for opposite effects of Ca and NH(4), the effective concentrations being about 10(-3)m, and the reversibility of the effects of one solute by another of opposite stabilization-destabilization effect.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here