z-logo
open-access-imgOpen Access
Interaction between Osmotic- and Pressure-induced Water Flow in Plant Roots
Author(s) -
Edward Newman
Publication year - 1976
Publication title -
plant physiology
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 3.554
H-Index - 312
eISSN - 1532-2548
pISSN - 0032-0889
DOI - 10.1104/pp.57.5.738
Subject(s) - xylem , osmotic pressure , compartment (ship) , permeability (electromagnetism) , pressure gradient , drag , osmosis , chemistry , biophysics , water flow , mechanics , botany , soil science , biology , environmental science , geology , biochemistry , physics , membrane , oceanography
When the pressure gradient across a root alters, there is often an apparent change in the permeability of the root to water. Fiscus (Plant Physiol. 1975. 55: 917-922) has suggested that this can be explained by a simple two-compartment model which takes into account rates of solute uptake into the xylem. A method of testing actual data against the Fiscus model is proposed; this shows that in some cases the apparent changes in permeability cannot be explained by the model. The model is not adequate to predict the amounts of solute reaching the xylem by passive drag: a three-compartment model would be more realistic.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom