z-logo
open-access-imgOpen Access
Studies on Lipid Synthesis and Degradation in Developing Soybean Cotyledons
Author(s) -
Richard F. Wilson,
Robert W. Rinne
Publication year - 1976
Publication title -
plant physiology
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 3.554
H-Index - 312
eISSN - 1532-2548
pISSN - 0032-0889
DOI - 10.1104/pp.57.3.375
Subject(s) - phosphatidylethanolamine , diglyceride , phosphatidic acid , glycerol , cotyledon , biochemistry , phosphatidylcholine , phosphatidylinositol , kinetics , glycine , triglyceride , chemistry , biosynthesis , diacylglycerol kinase , lipid metabolism , fatty acid , phospholipid , biology , enzyme , amino acid , botany , cholesterol , membrane , physics , protein kinase c , kinase , quantum mechanics
The metabolic activity of individual lipid classes found in developing soybean cotyledons (Glycine max.) is estimated by determining the degradation rate of the compound under given conditions. Pulse-labeling and dual substrate labeling are used to evaluate this parameter. These studies indicate first order decay kinetics for phosphatidic acid, phosphatidylinositol, phosphatidylcholine, phosphatidylethanolamine, N-acyl-phosphatidylethanolamine, diglyceride, and zero order kinetics for triglyceride in cotyledons var. "Harosoy 63" at 30 days after flowering. Decay coefficients for acyl groups and lipid-glycerol moieties within specific lipid classes from either method are comparable. Half-life (t((1/2))) calculations from the decay coefficients indicate extremely rapid turn-over rates (0.08 to 3.4 hours at 25 C) and suggest similar turnover rates of acyl groups and lipid-glycerol in diglyceride and all phospholipids except N-acylphosphatidylethanolamine where acyl groups are replaced independent of the glycerol moiety. These experiments reveal not only different metabolic activity between lipid components of soybean cotyledons, but also describe a new method for measuring lipid turnover in plants.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom