Boron Uptake by Excised Barley Roots
Author(s) -
John E. Bowen,
P. Nissen
Publication year - 1976
Publication title -
plant physiology
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 3.554
H-Index - 312
eISSN - 1532-2548
pISSN - 0032-0889
DOI - 10.1104/pp.57.3.353
Subject(s) - monosaccharide , boron , polysaccharide , chemistry , cell wall , hordeum vulgare , distilled water , stoichiometry , polyol , monomer , nuclear chemistry , chromatography , biochemistry , botany , poaceae , biology , organic chemistry , polyurethane , polymer
At 2 C, all boron accumulated by excised barley roots (Hordeum vulgare L. cv. Herta) remains in the free space; i.e. active uptake is nil at this temperature. Three component fractions of free space B were apparent: (a) a surface contaminant film of B on blotted roots, (b) water free space B, and (c) B reversibly bound in the cell walls. A stoichiometric release of H(+) from the roots in the presence of B indicated that B was bound by borate complexes with polysaccharides in the cell walls. Polysaccharide-borate complexes are much less stable than those of monosaccharides, and the bound B fraction could be readily removed by rinsing the roots in the presence of a monomeric polyol possessing the necessary cis-diol configuration. Cell wall material separated from excised barley roots had a B binding capacity 66% greater than that of intact roots.A 30-minute rinse in distilled H(2)O or 0.5 mm CaSO(4) was required to remove all cell wall-bound B from the roots after a 30-minute uptake period. Thus, although B in the contaminant surface film and the water free space is rinsed from the roots within 10 minutes, a 30-minute rinse is essential if all reversibly accumulated B is to be removed from the free space.
Accelerating Research
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom
Address
John Eccles HouseRobert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom