z-logo
open-access-imgOpen Access
Effects of Kinetin and Root Tip Removal on Exudation and Potassium (Rubidium) Transport in Roots of Honey Locust
Author(s) -
Sung Gak Hong,
Edward Sucoff
Publication year - 1976
Publication title -
plant physiology
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 3.554
H-Index - 312
eISSN - 1532-2548
pISSN - 0032-0889
DOI - 10.1104/pp.57.2.230
Subject(s) - kinetin , locust , chemistry , cell permeability , potassium , rubidium , cytokinin , botany , permeability (electromagnetism) , horticulture , biophysics , biology , biochemistry , membrane , auxin , tissue culture , in vitro , organic chemistry , gene
Exudation, (86)Rb transport, and water permeability were examined in excised roots of honey locust (Gleditsia triacanthos L.) treated by removing the tip 2 mm (tip-cut 2 mm) or tip 8 mm of the root, or by adding kinetin, or by both treatments. Tip removal increased the rate of exudation. Kinetin, 5 x 10(-6)m, inhibited exudation and Rb transport in tip-cut 2-mm roots; the inhibition was reversible. Kinetin inhibition of exudation was initially associated with lower K(Rb) transport and later with decreases in both ion transport and water permeability. Exudation was also inhibited at 10(-10) to 10(-7)m kinetin. Exudation from roots with intact tips was not altered by kinetin until after about 24 hours. Light during the exudation period had no significant (95%) influence on rate of exudation during the first 24 hours whether root tips were cut or kinetin applied.The results suggest the involvement of the root tip in regulating exudation in other parts of the root. This regulation might occur through cytokinin control of water permeability and the rate of ion transport.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom