z-logo
open-access-imgOpen Access
Effect of Temperature on Respiration of Mitochondria and Shoot Segments from Cold hardened and Nonhardened Wheat and Rye Seedlings
Author(s) -
M. Keith Pomeroy,
Christopher J. Andrews
Publication year - 1975
Publication title -
plant physiology
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 3.554
H-Index - 312
eISSN - 1532-2548
pISSN - 0032-0889
DOI - 10.1104/pp.56.5.703
Subject(s) - respiration , secale , biology , shoot , botany , mitochondrion , degree of unsaturation , horticulture , chemistry , biochemistry , organic chemistry
The effect of temperature on respiration of mitochondria and tissue segments from three wheat (Triticum aestivum L.) and one rye (Secale cereale L.) cultivar grown at 2 and 24 C has been examined. Discontinuities in Arrhenius plots of respiratory activity against temperature were observed for mitochondria and tissue segments from seedlings grown at both temperatures. The rates of respiration decreased abruptly below the transition temperatures, resulting in increased energy of activation values for respiration. Transition temperatures were observed from 6 to 10 C during tissue segment respiration, and from 10 to 14 C during respiration by isolated mitochondria. Respiratory control and efficiency of phosphorylation were not affected markedly by either reaction temperature or growth temperature of the seedlings. No correlation was observed between the cold hardiness of the cultivars and the temperature at which structural transitions occurred in the mitochondria. Dry matter content of the seedlings increased markedly during growth at 2 C, but no appreciable changes in the levels of mitochondrial protein were observed. The results support the view that changes other than fatty acid unsaturation are involved in the abrupt change in mitochondrial membrane properties at low temperature.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom