z-logo
open-access-imgOpen Access
Partial Purification and Properties of Ornithine Transcarbamoylase from Nostoc muscorum Kützing
Author(s) -
Samuel F. Boggess,
Aubrey W. Naylor
Publication year - 1975
Publication title -
plant physiology
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 3.554
H-Index - 312
eISSN - 1532-2548
pISSN - 0032-0889
DOI - 10.1104/pp.56.5.640
Subject(s) - aspartate carbamoyltransferase , citrulline , biochemistry , ornithine , enzyme , ornithine carbamoyltransferase , carbamoyl phosphate synthetase , biology , nostoc , ornithine transcarbamylase , bicarbonate , chemistry , arginine , amino acid , bacteria , urea cycle , allosteric regulation , cyanobacteria , genetics , endocrinology
Ornithine transcarbamoylase (carbamoyl phosphate:l-ornithine carbamoyltransferase, EC 2.1.3.3) has been partially purified from the blue-green alga Nostoc muscorum Kützing, an organism in which the enzyme seems to be involved in a bicarbonate-fixing pathway leading to citrulline. Pertinent to possible regulation of this pathway, the enzyme shows hyperbolic substrate kinetics, has a molecular weight estimated at 75,000 daltons, and its catalytic capability is little influenced by a selection of metabolites that might conceivably act as regulators in vivo. Thus it seems unlikely that this enzyme is the control point for bicarbonate fixation. In terms of energy of activation (12.3 kcal/mole), size and Km for carbamoylphosphate, the Nostoc enzyme resembled preparations from liver and higher plants more than preparations from Streptococcus and Mycoplasma. The enzymes from Streptococcus and Mycoplasma are probably specialized for citrulline breakdown rather than citrulline synthesis. The Km for ornithine was 2.5 mm at a saturating concentration of carbamoylphosphate and the Km for carbamoylphosphate was 0.7 mm at an ornithine concentration of 2 mm. Ornithine was inhibitory at concentrations greater than 2 mm. Phosphate was a competitive inhibitor with respect to carbamoylphosphate. The pH optimum for citrulline synthesis was 9.5.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom