Glucomannan Biosynthesis Catalyzed by Pisum sativum Enzymes
Author(s) -
Michael B. Hinman,
C. L. Villemez
Publication year - 1975
Publication title -
plant physiology
Language(s) - Uncategorized
Resource type - Journals
SCImago Journal Rank - 3.554
H-Index - 312
eISSN - 1532-2548
pISSN - 0032-0889
DOI - 10.1104/pp.56.5.608
Subject(s) - pisum , sativum , guanosine , glucomannan , biochemistry , biosynthesis , phaseolus , enzyme , chemistry , substrate (aquarium) , biology , botany , ecology
The results of molecular weight studies, structural analysis of the [(14)C]polysaccharides, and enzymic properties indicate that the Pisum sativum guanosine diphosphosphate glucose: glucosyltransferase is an enzymic component involved in the biosynthesis of glucomannan chains. The properties of the Pisum sativum particulate enzyme are essentially identical to the glucomannan synthetase obtained from Phaseolus aureus. Also present in the particulate preparation is an enzyme which catalyzes the formation of a [(14)C]mannolipid, using guanosine diphosphate-[(14)C]mannose as a substrate. The [(14)C]mannolipid is hydrolyzed by treatment with 0.012 m HCl, but is stable to treatment with 0.09 m NaOH. The formation of the [(14)C]mannolipid is apparently reversed by guanosine diphosphate, but not by guanosine monophosphate. The chromatographic mobility of the [(14)C]mannolipid is identical to that of a similar mannolipid synthesized by a Phaseolus aureus enzyme.
Accelerating Research
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom
Address
John Eccles HouseRobert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom