Phytochrome, Nitrate Movement, and Induction of Nitrate Reductase in Etiolated Pea Terminal Buds
Author(s) -
Richard W. Jones,
R. W. Sheard
Publication year - 1975
Publication title -
plant physiology
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 3.554
H-Index - 312
eISSN - 1532-2548
pISSN - 0032-0889
DOI - 10.1104/pp.55.6.954
Subject(s) - nitrate reductase , nitrate , etiolation , phytochrome , darkness , chemistry , biochemistry , biology , botany , enzyme , ecology , red light
The role of phytochrome in the induction of nitrate reductase of etiolated field peas (Pisum arvense L.) was examined. Terminal bud nitrate concentration increased in darkness, and the increase correlated with induction of nitrate reductase following brief exposure of intact plants to red, blue, far red, and white lights. Brief light exposure of intact plants stimulated nitrate uptake and induction of nitrate reductase by terminal buds subsequently excised and incubated on nitrate solution in darkness; exposure of excised buds in contact with nitrate led to less uptake but more induction. Nitrate and nitrate reductase activity both declined during incubation with water, irrespective of light treatment. Nitrate enrichment of intact terminal buds and uptake into excised buds and increases in nitrate reductase activity were all red/far red reversible. Dimethyl sulfoxide (1%, v/v) and sugars (sucrose 0.5%, glucose 1, w/v), although stimulating nitrate uptake into excised tissue in darkness, failed to enhance nitrate reductase activity over dark controls. Phytochrome may regulate nitrate reductase via both nitrate movement and a general mechanism such as enhancement of protein synthesis.
Accelerating Research
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom
Address
John Eccles HouseRobert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom