z-logo
open-access-imgOpen Access
Nitrate Uptake and Assimilation by Wheat Seedlings during Initial Exposure to Nitrate
Author(s) -
Doyle A. Ashley,
W. Andrew Jackson,
Richard J. Volk
Publication year - 1975
Publication title -
plant physiology
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 3.554
H-Index - 312
eISSN - 1532-2548
pISSN - 0032-0889
DOI - 10.1104/pp.55.6.1102
Subject(s) - nitrate , shoot , nitrogen assimilation , chemistry , nitrogen , chromosomal translocation , horticulture , agronomy , zoology , botany , biology , biochemistry , organic chemistry , gene
Nitrate uptake, reduction, and translocation were examined in intact, 14-day-old, nitrogen-depleted wheat (Triticum vulgare var. Knox) seedlings during a 9-hour exposure to 0.2 mm Ca (NO(3))(2). The nitrate uptake rate was low during the initial 3-hour period, increased during the 3- to 6-hour period, and then declined. By the 3rd hour, 14% of the absorbed nitrate had been reduced, and this increased to 36% by the 9th hour. Shoots accumulated reduced (15)N more rapidly than roots and the ratio of reduced (15)N to (15)N-nitrate was higher in the shoots. A significant proportion of the total reduction occurred in the root system under these experimental conditions. Accumulation of (15)N in ethanol-insoluble forms was evident in both roots and shoots by the 3rd hour and, after 4.5 hours, increased more rapidly in shoots than in roots.An experiment in which a 3-hour exposure to 0.2 mm Ca ((15)NO(3))(2) was followed by a 12-hour exposure to 0.2 mm Ca ((14)NO(3))(2) revealed a half-time of depletion of root nitrate of about 2.5 hours. A large proportion of this depletion, however, was due to loss of (15)N-nitrate to the ambient (14)N-nitrate solution. The remaining pool of (15)N-nitrate was only slowly available for reduction. Total (15)N translocation to the shoot was relatively efficient during the first 3 hours after transfer to Ca ((14)NO(3))(2) but it essentially ceased after that time in spite of significant pools of (15)N-nitrate and alpha-amino-(15)N remaining in the root tissue.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom