z-logo
open-access-imgOpen Access
The Isolation and Characterization of Adenosine Monophosphate-rich Polynucleotides Synthesized by Soybean Hypocotyl Cells
Author(s) -
Ben D. Schmid,
Ned R. Siegel,
Larry N. Vanderhoef
Publication year - 1975
Publication title -
plant physiology
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 3.554
H-Index - 312
eISSN - 1532-2548
pISSN - 0032-0889
DOI - 10.1104/pp.55.2.277
Subject(s) - rna , biochemistry , adenosine , nucleotide , nucleic acid , chemistry , dna , cytoplasm , polynucleotide , messenger rna , gene
Plant ribonucleic acids which have high adenosine monophosphate concentrations were studied. Purified deoxyribonucleic acid-like ribonucleic acid and tenaciously bound ribonucleic acid fractions both contained poly-adenosine monophosphate sequences (those from the latter being longer than those from the former); without these poly-adenosine monophosphate sequences their base compositions were the same. The average poly-adenosine monophosphate sequence from purified tenaciously bound ribonucleic acid was 160 residues long, as measured by gel electrophoresis. However, base hydrolysis and chromatography indicated one 3'-nucleoside (adenosine) per 71 nucleotides, giving a chain length of 72 residues. The dominant species in the cytoplasm, as measured by radioactive precursor incorporation, was tenaciously bound ribonucleic acid, whereas deoxyribonucleic acid-like ribonucleic acid was present in greater amounts in the nucleus. This work provides evidence that deoxyribonucleic acid-like ribonucleic acid and tenaciously bound ribonucleic acid represent forms of messenger ribonucleic acid in soybean, with deoxyribonucleic acid-like ribonucleic acid residing in the nucleus, perhaps as the messenger ribonucleic acid precursor, and tenaciously bound ribonucleic acid residing, as the active messenger ribonucleic acid, in the cytoplasm.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom