z-logo
open-access-imgOpen Access
The Development of Microbodies (Glyoxysomes and Leaf Peroxisomes) in Cotyledons of Germinating Watermelon Seedlings
Author(s) -
T. Kagawa,
Harry Beevers
Publication year - 1975
Publication title -
plant physiology
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 3.554
H-Index - 312
eISSN - 1532-2548
pISSN - 0032-0889
DOI - 10.1104/pp.55.2.258
Subject(s) - glyoxysome , microbody , peroxisome , biology , catalase , citrullus , darkness , biochemistry , sucrose , glyoxylate cycle , organelle , germination , botany , enzyme , gene
The ontogeny of glyoxysomes and leaf peroxisomes has been examined in the cotyledons of germinating watermelon (Citrullus vulgaris) seedlings. Organelles from the cotyledons were extracted by razor blade homogenization and microbodies were separated by sucrose density gradient fractionation. Both kinds of microbodies have the same mean equilibrium density on sucrose gradients.The development of leaf peroxisomes was examined in seedlings transferred to light at 4 days and 10 to 12 days. In seedlings maintained in darkness to the age of 10 to 12 days, glyoxysomal enzymes virtually disappeared, and the losses were paralleled by a corresponding loss in microbody protein. During this period peroxisomal activity was low and changed only slightly. On transfer to light at this stage, the activity of peroxisomal enzymes rose strikingly. The residual glyoxysomal activity disappeared completely, and the developmental pattern of microbody catalase and microbody protein paralleled the light-induced glyoxysomal disappearance.Similar patterns of microbody development were observed when 4-day-old dark-grown seedlings with maximum glyoxysomal activities were exposed to light. The activity of the peroxisomal enzymes increased and the glyoxysomal enzymes disappeared at a faster rate than in darkness. These changes were again paralleled by the accelerated demise of microbody catalase and microbody protein. Thus under both conditions glyoxysomes were selectively destroyed during peroxisomal development, and the amount of peroxisomes produced was insufficient to offset the loss of glyoxysomal protein. The results do not support the contention that glyoxysomes are transformed to leaf peroxisomes in developing cucurbit cotyledons and favor the view that the two kinds of microbody arise independently of each other.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom