Plasma Membrane Adenosine Triphosphatase of Oat Roots
Author(s) -
Nelson E. Balke,
Thomas K. Hodges
Publication year - 1975
Publication title -
plant physiology
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 3.554
H-Index - 312
eISSN - 1532-2548
pISSN - 0032-0889
DOI - 10.1104/pp.55.1.83
Subject(s) - atpase , avena , enzyme , chemistry , substrate (aquarium) , membrane , biochemistry , adenosine triphosphate , atp hydrolysis , enzyme assay , adenosine triphosphatase , biophysics , biology , ecology
ATPase activity of plasma membrane vesicles isolated from oat (Avena sativa L. cv. Goodfield) roots was examined in the presence of various concentrations of MgCl(2) and ATP. A Mg(2+): ATP ratio of about 1 was required for maximal activity regardless of the concentrations used; the optimum concentration for both Mg(2+) and ATP was 9 mm. Based on the ATPase activity at different concentrations of complexed Mg.ATP and free ATP, it is concluded that Mg.ATP is the true substrate of this enzyme.Under certain experimental conditions, high concentrations of MgCl(2) and ATP inhibited the plasma membrane ATPase. On the basis of the relative amounts of free and complexed ATP and Mg(2+), it was found that the different moieties caused different amounts of inhibition. Free ATP inhibited the ATPase at concentrations in excess of 2 mm. Mg.ATP concentrations above 11 mm inhibited the enzyme. Free Mg(2+) caused only a slight inhibition of the ATPase.The Km for Mg.ATP was found to vary from 0.64 to 1.24 mm depending on the experimental conditions. This variation is thought to be due to variable amounts of Mg.ATP, which serves as an inhibitor as well as the substrate, and free ATP, which also inhibits the enzyme.
Accelerating Research
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom
Address
John Eccles HouseRobert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom