Effect of Red Light on Coleoptile Growth
Author(s) -
Robert Muir,
Katherine Chen Chang
Publication year - 1974
Publication title -
plant physiology
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 3.554
H-Index - 312
eISSN - 1532-2548
pISSN - 0032-0889
DOI - 10.1104/pp.54.3.286
Subject(s) - coleoptile , avena , auxin , darkness , phytochrome , red light , gibberellic acid , phototropism , biology , blue light , far red , tryptophan , chemistry , biochemistry , biophysics , botany , germination , amino acid , materials science , optoelectronics , gene
The effects of red light in reducing the growth of the oat (Avena sativa L.) coleoptile and the synthesis of auxin in the coleoptile tip are detectable 2 hours after treatment and become more pronounced with time. When the coleoptile tip is supplied with additional tryptophan the synthesis of auxin is doubled both in darkness and when exposed to red light. Treatment of the tip with gibberellic acid or pyridoxal phosphate overcomes the reduction of auxin synthesis caused by red light. The uptake of exogenous indoleacetic acid, at pH 6.5, by coleoptile tissue is doubled by exposure to red light. The effect of red light on coleoptile growth appears to be mediated by phytochrome in the cell membrane which delocalizes the tryptophan utilized for auxin synthesis.
Accelerating Research
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom
Address
John Eccles HouseRobert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom