z-logo
open-access-imgOpen Access
Phytochrome-dependent Reduction of Nicotinamide Nucleotides in the Mitochondrial Fraction Isolated from Etiolated Pea Epicotyls
Author(s) -
Katsushi Manabe,
Masaki Furuya
Publication year - 1974
Publication title -
plant physiology
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 3.554
H-Index - 312
eISSN - 1532-2548
pISSN - 0032-0889
DOI - 10.1104/pp.53.3.343
Subject(s) - pisum , etiolation , biochemistry , sativum , centrifugation , biology , phytochrome , chloroplast , mitochondrion , chemistry , enzyme , red light , botany , gene
When mitochondria isolated from etiolated pea (Pisum sativum cv. Alaska) epicotyls were exposed briefly to red light, their ability to reduce exogenous NADP was enhanced. The red light effect was reversed by far red light. Photoreversible absorbance changes between 730 nm and 800 nm were spectrophotometrically detected in the purified mitochondria and its membrane fraction. The dehydrogenase activity in the mitochondria was heat-labile and was dependent on the presence of magnesium ion and appropriate substrates such as glucose 6-phosphate, isocitrate, pyruvate, 6-phosphogluconate, and succinate. The photoreversible effect was seen only for a few minutes after the irradiation, and was cancelled by hypotonic treatment or addition of Triton X-100. A similar but lesser effect was observed in the pea microsome fraction, whereas no photoreversible response was seen with a supernatant fraction resulting from centrifugation at 10(5)g for 30 minutes.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom