Rapid Estimates of Relative Water Content
Author(s) -
Richard Smart,
Gail E. Bingham
Publication year - 1974
Publication title -
plant physiology
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 3.554
H-Index - 312
eISSN - 1532-2548
pISSN - 0032-0889
DOI - 10.1104/pp.53.2.258
Subject(s) - zea mays , turgor pressure , horticulture , vitis vinifera , relative survival , relative standard deviation , plant tissue , water content , phytol , chemistry , botany , biology , agronomy , chromatography , cancer registry , genetics , cancer , detection limit , geotechnical engineering , engineering
Relative water content may be accurately estimated using the ratio of tissue fresh weight to tissue turgid weight, termed here relative tissue weight. That relative water content and relative tissue weight are linearly related is demonstrated algebraically. The mean value of r(2) for grapevine (Vitis vinifera L. cv. Shiraz) leaf tissue over eight separate sampling occasions was 0.993. Similarly high values were obtained for maize (Zea mays cv. Cornell M-3) (0.998) and apple (Malus sylvestris cv. Northern Spy) (0.997) using a range of leaf ages. The proposal by Downey and Miller (1971. Rapid measurements of relative turgidity in maize (Zea mays L.). New Phytol. 70: 555-560) that relative water content in maize may be estimated from water uptake was also investigated for grapevine leaves; this was found to be a less reliable estimate than that obtained with relative tissue weight. With either method, there is a need for calibration, although this could be achieved for relative tissue weight at least with only a few subsamples.
Accelerating Research
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom
Address
John Eccles HouseRobert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom