Enzymes Related to Lactate Metabolism in Green Algae and Lower Land Plants
Author(s) -
Peter J. Gruber,
Sue Ellen Frederick,
N. E. Tolbert
Publication year - 1974
Publication title -
plant physiology
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 3.554
H-Index - 312
eISSN - 1532-2548
pISSN - 0032-0889
DOI - 10.1104/pp.53.2.167
Subject(s) - lactate dehydrogenase , nad+ kinase , biochemistry , pyruvate decarboxylation , pyruvate dehydrogenase kinase , chlorella pyrenoidosa , pyruvate dehydrogenase phosphatase , dehydrogenase , enzyme , biology , chemistry , pyruvate dehydrogenase complex , chlorella , algae , botany
Cell-free extracts of Chlorella pyrenoidosa contained two enzymes capable of oxidizing d-lactate; these were glycolate dehydrogenase and NAD(+)-dependent d-lactate dehydrogenase. The two enzymes could be distinguished by differential centrifugation, glycolate dehydrogenase being largely particulate and NAD(+)-d-lactate dehydrogenase being soluble. The reduction of pyruvate by NADH proceeded more rapidly than the reverse reaction, and the apparent Michaelis constants for pyruvate and NADH were lower than for d-lactate and NAD(+). These data indicated that under physiological conditions, the NAD(+)-linked d-lactate dehydrogenase probably functions to produce d-lactate from pyruvate.Lactate dehydrogenase activity dependent on NAD(+) was found in a number of other green algae and in the green tissues of a few lower land plants. When present in species which contain glycolate oxidase rather than glycolate dehydrogenase, the enzyme was specific for l-lactate rather than d-lactate. A cyclic system revolving around the production and utilization of d-lactate in some species and l-lactate in certain others is proposed.
Accelerating Research
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom
Address
John Eccles HouseRobert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom