Participation of Ethylene in Common Purslane Response to Dicamba
Author(s) -
Maria Stacewicz-Sapuncakis,
H. V. Marsh,
Jonas Vengris,
Paul Jennings,
Trevor Robinson
Publication year - 1973
Publication title -
plant physiology
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 3.554
H-Index - 312
eISSN - 1532-2548
pISSN - 0032-0889
DOI - 10.1104/pp.52.5.466
Subject(s) - dicamba , ethylene , nitrate reductase , chemistry , efflux , nitrate , membrane permeability , horticulture , biochemistry , biology , agronomy , organic chemistry , membrane , weed control , catalysis
The responses of common purslane (Portulaca oleracea L.) plants to 2-methoxy-3,6-dichlorobenzoic acid (dicamba) were found to be similar in many respects to ethylene fumigation effects. Dicamba and ethylene increased the permeability of cell membranes in purslane tissues. An increased efflux of electrolytes was observed in the bending region of the stems of dicamba-treated plants. Epinastic leaves after dicamba (10 micrograms) and ethylene (microliter per liter) treatments showed an increased efflux of rubidium. The permeability effects were observable within 1 day after dicamba or ethylene application. Protein metabolism in purslane leaves was not influenced by dicamba until 2 days after treatment, as indicated by reduced nitrate reductase activity. Inhibition of phenylalanine-U-(14)C incorporation into protein was observed 3 days after treatment. Ethylene reduced both phenylalanine-U-(14)C incorporation into protein and nitrate reductase activity within 1 day. Dicamba caused a rapid increase in ethylene production in purslane plants to levels many times greater than those observed in untreated plants. It was concluded that the dicamba-enhanced production of ethylene is responsible for many of the observed effects of the herbicide.
Accelerating Research
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom
Address
John Eccles HouseRobert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom