Promotion of Seed Germination by Cyanide
Author(s) -
R. B. Taylorson,
S. B. Hendricks
Publication year - 1973
Publication title -
plant physiology
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 3.554
H-Index - 312
eISSN - 1532-2548
pISSN - 0032-0889
DOI - 10.1104/pp.52.1.23
Subject(s) - potassium cyanide , germination , cyanide , chemistry , asparagine , cysteine , substrate (aquarium) , hydrolysis , biochemistry , amino acid , enzyme , botany , organic chemistry , biology , ecology
Potassium cyanide at 3 mum to 10 mm promotes germination of Amaranthus albus, Lactuca sativa, and Lepidium virginicum seeds. l-Cysteine hydrogen sulfide lyase, which catalyzes the reaction of HCN with l-cysteine to form beta-l cyanoalanine, is active in the seeds. beta-l-Cyanoalanine is the most effective of the 23 alpha-amino acids tested for promoting germination of A. albus seeds. Aspartate, which is produced by enzymatic hydrolysis of asparagine formed by hydrolysis from beta-cyanoalanine, is the second most effective of the 23 amino acids. Uptake of aspartate-4-(14)C is much lower than of cyanide.Radioactive tracer in K(14)CN shows uptake of about 1.5 mumoles of HCN per gram of A. albus and L. sativa seeds after 20 hours of imbibition. Extracts of the seeds gave high (14)C activity in beta-cyanoalanine, asparagine, and aspartate. The acid-hydrolyzed protein extract gave high activity only in aspartate. Tests were negative for free cyanide in the seed. Respiration of the seed is inhibited more than 75% by KCN and by KN(3) at 10 mm. Azide at greater than 1.0 mm inhibits the promotion of germination by cyanides. Neither 0.1 mm KCN nor KN(3) inhibit O(2) consumption, whereas lower concentrations promote germination. It is concluded that the high rate of utilization of cyanide in the reaction to form beta-l-cyanoalanine and the subsequent incorporation into protein limit any inhibition of oxygen consumption. The promotion of seed germination is substrate-limited by asparagine-aspartate, which is required for protein synthesis.
Accelerating Research
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom
Address
John Eccles HouseRobert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom