z-logo
open-access-imgOpen Access
Action Spectra for Chromatic Adaptation in Tolypothrix tenuis
Author(s) -
Stephen Diakoff,
Joseph Scheibe
Publication year - 1973
Publication title -
plant physiology
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 3.554
H-Index - 312
eISSN - 1532-2548
pISSN - 0032-0889
DOI - 10.1104/pp.51.2.382
Subject(s) - nanometre , shortwave , pigment , phycocyanin , chromatic scale , materials science , wavelength , chromatic adaptation , blue green algae , action spectrum , nanotechnology , optoelectronics , optics , physics , chemistry , botany , biology , cyanobacteria , bacteria , radiative transfer , organic chemistry , genetics
The dark synthesis of biliproteins in the blue-green alga Tolypothrix tenuis is controlled by brief light treatments. Green light potentiates synthesis of phycoerythrin and red light potentiates synthesis of phycocyanin. Red reverses the effect of green and vice versa. Action spectra for the red and green effects were obtained for the wavelength region 320 nanometers to 710 nanometers, at 10-nanometer intervals. The principal action band in the red peaks at 660 nanometers, with a half-band width of 58 nanometers and an accompanying shortwave band at 360 nanometers. The green action band peaks at 550 nanometers, with a half-band width of 76 nanometers, and a shortwave band at 350 nanometers. Chromatic adaptation and another photomorphogenic response in the blue-green algae are discussed in terms of possible regulation by a photoreversible pigment recently isolated from Tolypothrix.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom