z-logo
open-access-imgOpen Access
An Intermediate in the Synthesis of Glucobrassicins from 3-Indoleacetaldoxime by Woad Leaves
Author(s) -
S. Mahadevan,
Bruce B. Stowe
Publication year - 1972
Publication title -
plant physiology
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 3.554
H-Index - 312
eISSN - 1532-2548
pISSN - 0032-0889
DOI - 10.1104/pp.50.1.43
Subject(s) - chemistry , sulfur , cystine , selenate , stereochemistry , glucosinolate , moiety , biochemistry , botany , biology , organic chemistry , brassica , enzyme , cysteine , selenium
Leaves of woad (Isatis tinctoria L.) were found to incorporate efficiently tritiated indoleacetaldoxime and (35)S from (35)S-l-cystine into glucobrassicin and sulfoglucobrassicin. Time course of incorporation of (35)S from (35)S-cystine into the glucosinolates indicated that glucobrassicin was formed first and then sulfoglucobrassicin. Simultaneous administration of tritiated indoleacetaldoxime and (35)S-cystine gave doubly labeled glucobrassicin and sulfoglucobrassicin. About twice as much (35)S was present in sulfoglucobrassicin as compared to glucobrassicin per unit of (3)H incorporated, indicating that a second, probably oxidized, atom of (35)S was later introduced into sulfoglucobrassicin. However, the (35)S incorporated from cystine into both glucosinolates during the first 8 hours of metabolism was almost exclusively in the divalent sulfur moiety. The incorporation patterns of (35)S and titritated indoleacetaldoxime into the glucosinolates suggested a fast turnover of glucobrassicin in the metabolizing leaves.A new indolic, sulfur-containing neutral compound X was found to accumulate in woad leaves when administered (3)H-3-indoleacetaldoxime and cold cystine or (35)S-cystine and cold 3-indoleacetaldoxime. This accumulation was enhanced about 2- to 2.5-fold by the simultaneous administration of postassium selenate, an inhibitor of biological sulfation processes. Selenate also appeared to inhibit the conversion of glucobrassicin to 1-sulfoglucobrassicin. Partially purified compound X was efficiently converted (56-60%) to glucobrassicin and 1-sulfoglucobrassicin on readministration to woad leaves, indicating it to be a precursor of the glucosinolates. Compound X, on treatment with myrosinase, slowly yielded a less polar, indolic, sulfur containing compound Y and glucose. Compound Y decomposed with time into indoleacetonitrile suggesting that it may be indoleacetothiohydroximate. Compound X has been tentatively assigned the structure of desthioglucobrassicin, the nonsulfated form of glucobrassicin.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom