z-logo
open-access-imgOpen Access
Isolation of Indole-3-ethanol Oxidase from Cucumber Seedlings
Author(s) -
Larry E. Vickery,
William K. Purves
Publication year - 1972
Publication title -
plant physiology
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 3.554
H-Index - 312
eISSN - 1532-2548
pISSN - 0032-0889
DOI - 10.1104/pp.49.5.716
Subject(s) - sephadex , chemistry , enzyme , chromatography , reagent , cucumis , acetaldehyde , enzyme assay , size exclusion chromatography , ethanol , solvent , column chromatography , indole test , adduct , biochemistry , organic chemistry , biology , botany
Previous work in this laboratory has shown that cucumber (Cucumis sativus L.) seedlings contain large amounts, relative to other indolic compounds, of extractable indole-3-ethanol (IEt); tracer studies have established that IEt is metabolized to IAA. We have now succeeded in isolating an enzyme from these seedlings which catalyzes the oxidation of IEt to indole-3-acetaldehyde (IAAld). The identification of the product as IAAld was based on solvent partitioning of the free aldehyde and its bisulfite adduct and radiochromatography following incubation of enzyme with (14)C-IEt. A novel, quantitative colorimetric test for IAAld was also developed utilizing the Salkowski reagent. Partial purification of the enzyme was achieved by salt gradient chromatography on Bio-Rex 70, heating the preparation to 70 C, and chromatography on Sephadex G-150. This purification procedure yielded an enzyme activity purified in excess of 3000-fold, and studies on a standardized Sephadex column suggest a molecular weight of the enzyme of approximately 105,000. The reaction was found to proceed only aerobically; and, in the absence of other electron acceptors, O(2) appears to be reduced to H(2)O(2). The enzyme has nearly maximum activity from pH 8 to 11.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom