Gibberellin Substitution for the Requirement of the Cotyledons in Stem Elongation in Pisum sativum Seedlings
Author(s) -
Terry L. Shininger
Publication year - 1972
Publication title -
plant physiology
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 3.554
H-Index - 312
eISSN - 1532-2548
pISSN - 0032-0889
DOI - 10.1104/pp.49.3.341
Subject(s) - gibberellic acid , pisum , elongation , sativum , gibberellin , seedling , biology , botany , horticulture , germination , ultimate tensile strength , materials science , metallurgy
The removal of the cotyledons from 8-day-old light-grown Pisum sativum cv. Alaska seedlings caused a reduction in the rate of stem elongation to 50% of the intact control value. Gibberellic acid restored the stem elongation rate of decotylized plants to the level of the intact controls. The effect of decotylization was to lower both the rate of node formation and the rate of internode elongation. The steady state rate of internode elongation was reduced to 50% of the control rate by decotylization. Applied gibberellic acid did not restore the normal rate of node formation nor the lag in internode elongation caused by decotylization, but gibberellic acid did restore the normal steady state rate of internode elongation. Analysis of variance demonstrated an interaction between the cotyledons and applied gibberellic acid. 2-Isopropyl-4-dimethylamino-5-methyl phenyl-1-piperidine carboxylate methyl chloride inhibited internode elongation to the same extent in both intact and decotylized plants. The results indicate that the cotyledons are an effective source of gibberellin for the young pea seedling.
Accelerating Research
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom
Address
John Eccles HouseRobert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom