Relationship between Photoconvertible and Nonphotoconvertible Protochlorophyllides
Author(s) -
Albert E. Murray,
Attila O. Klein
Publication year - 1971
Publication title -
plant physiology
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 3.554
H-Index - 312
eISSN - 1532-2548
pISSN - 0032-0889
DOI - 10.1104/pp.48.4.383
Subject(s) - protochlorophyllide , chlorophyll , phaseolus , biochemistry , chemistry , biology , botany , biosynthesis , enzyme
Two forms of protochlorophyllide are found in dark-grown bean (Phaseolus vulgaris, var. Black Velentine) leaves, one (protochlorophyllide(650)) which is directly photoconvertible to chlorophyllide and another (protochlorophyllide(632)) which is not. Dark-grown leaves placed in solutions of delta-aminolevulinic acid accumulate protochlorophyllide(632). Protochlorophyllide(650) and protochlorophyllide(632) can be partially separated on sucrose density gradients. A nitrogen atmosphere blocks chlorophyll synthesis in light or the regeneration of protochlorophyllide(650) in the dark, even in the presence of excess delta-aminolevulinic acid, except when a stockpile of protochlorophyllide(632) is present in the leaf. Under the latter conditions chlorophyll synthesis or protochlorophyllide(650) regeneration is accompanied by a decrease in protochlorophyllide(632). These experiments suggest that protochlorophyllide(632) may be converted to protochlorophyllide(650).Cycloheximide inhibited greening only after an "action-dependent" delay, requiring a predictable minimal period of illumination. This inhibition could be relieved for a time by feeding delta-aminolevulinic acid.
Accelerating Research
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom
Address
John Eccles HouseRobert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom