z-logo
open-access-imgOpen Access
Inhibition of Carotenoid Synthesis as a Mechanism of Action of Amitrole, Dichlormate, and Pyriclor
Author(s) -
Earl R. Burns,
Gale A. Buchanan,
Mason C. Carter
Publication year - 1971
Publication title -
plant physiology
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 3.554
H-Index - 312
eISSN - 1532-2548
pISSN - 0032-0889
DOI - 10.1104/pp.47.1.144
Subject(s) - etiolation , phytoene , carotenoid , chlorophyll , protochlorophyllide , chemistry , botany , photosynthesis , chloroplast , biology , biochemistry , lycopene , gene , enzyme
Amitrole (3-amino-s-triazole), dichlormate (3,4-dichlorobenzyl methylcarbamate), and pyriclor (2,3,5-trichloro-4-pyridinol) inhibited normal carotenogenesis in etiolated wheat (Triticum aestivum L. var. Coker 65-20) seedlings. Carotenoid precursors accumulated in treated plants. In dichlormate-treated plants, zeta-carotene accumulated, whereas phytofluene, phytoene, and zeta-carotene accumulated in amitrole- and pyriclor-treated plants. None of the herbicides interfered with protochlorophyllide synthesis or its conversion to chlorophyllide when etiolated plants were illuminated. Chlorophyll accumulated in treated plants exposed to light at 60 foot candles, but was unstable and partially destroyed by illumination at 4000 foot candles. These data suggest that the phytotoxicity of amitrole, pyriclor, and dichlormate is due to inhibition of the synthesis of carotenoids and to the consequent photodestruction of chlorophyll and chloroplast disruption.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom