Rapid Changes in Levels of Polyribosomes in Zea mays in Response to Water Stress
Author(s) -
Theodore C. Hsiao
Publication year - 1970
Publication title -
plant physiology
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 3.554
H-Index - 312
eISSN - 1532-2548
pISSN - 0032-0889
DOI - 10.1104/pp.46.2.281
Subject(s) - polysome , cycloheximide , ribosome , sucrose , chemistry , protein biosynthesis , ribonuclease , monomer , biochemistry , biophysics , biology , rna , polymer , organic chemistry , gene
Sucrose gradient profiles of polyribosomes from the coleoptilar node region of seedlings of Zea mays L. were obtained without pelleting and redispersion of the particles. Water stress caused a shift of ribosomes from the polymeric to the monomeric form, starting about 30 minutes after stress initiation and when the water potential of the tissue began to decrease measurably. After about 4 hours of stress (a decrease in tissue water potential of about 5 bars), most of the higher polymers of ribosomes had shifted to monoribosomes. Release of stress caused the ribosomes to revert from monomeric to polymeric form after a lag period apparently determined by the extent of prior stress. Use of bentonite and isolation of polyribosomes from combined stressed and control tissue gave results indicating that the reduced polyribosomal level was not an artifact caused by ribonuclease during isolation.Incubating roots in cycloheximide (2 micrograms per milliliter) had no effect on the proportion of polyribosomes in control roots, but it prevented the loss of polyribosomes caused by stress. Since cycloheximide inhibits the release of nascent polypeptide from polyribosomes, it appears possible that stress-effected loss in polyribosomes occurs only if polypeptides can be terminated and released.
Accelerating Research
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom
Address
John Eccles HouseRobert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom