z-logo
open-access-imgOpen Access
Effect of Adenine Nucleotides on the Respiration of Carrot Root Slices
Author(s) -
P. B. Adams
Publication year - 1970
Publication title -
plant physiology
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 3.554
H-Index - 312
eISSN - 1532-2548
pISSN - 0032-0889
DOI - 10.1104/pp.45.4.495
Subject(s) - respiration , dinitrophenol , biochemistry , adenine nucleotide , chemistry , stimulation , nucleotide , glycolysis , respiration rate , adenosine diphosphate , metabolism , biology , endocrinology , botany , gene , platelet aggregation , platelet , immunology
Sodium pyruvate and dinitrophenol stimulated O(2) uptake of freshly cut phloem parenchyma from carrot roots by 63 and 120% at optimal concentrations, indicating that production of pyruvate by glycolysis regulates over-all respiratory rate. Adding 0.5 to 6.7 mm Na(3)ADP and Na(3)ATP to slices rapidly stimulates respiration rate by 20 to 85%. The effect is greater at the lower end of this concentration range and is not due to change in pH or active cation uptake. It is suggested that treating tissue with both nucleotides stimulates pyruvate kinase, the rate-limiting step in respiration of freshly cut slices, by increasing the concentration of endogenous ADP. Adenosine diphosphate continued to stimulate O(2) uptake until the peak of induced respiration, but ATP inhibited respiration during development and decline of this peak. Absence of respiratory stimulation by NaH(2)PO(4) and of respiratory inhibition by added nucleosides confirms that inorganic phosphate is not a limiting factor of respiration in freshly cut slices. The stimulation of respiration rate of these slices by dinitrophenol is consistent with results from experiments in which ADP and ATP were applied to the tissue.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom