z-logo
open-access-imgOpen Access
The Incorporation of d-Glucosamine-14C into Root Tissues of Higher Plants
Author(s) -
R. Michael Roberts
Publication year - 1970
Publication title -
plant physiology
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 3.554
H-Index - 312
eISSN - 1532-2548
pISSN - 0032-0889
DOI - 10.1104/pp.45.3.263
Subject(s) - glucosamine , chemistry , phaseolus , d glucosamine , hydrolysis , biochemistry , amino sugar , polysaccharide , biology , botany
d-Glucosamine-1-(14)C was rapidly taken up from aqueous solution by both excised bean (Phaseolus vulgaris) and corn (Zea mays) root tips. The labeled glucosamine did not accumulate in the tissues, however, but was metabolized to N-acetyl-d-glucosamine, N-acetyl-d-glucosamine phosphates, and uridine diphosphate N-acetyl-d-glucosamine. Little or no label was detected in respiratory CO(2), glycolytic intermediates, or d-glucosamine 6-phosphate. Between 5 and 10% of the (14)C was recovered in high molecular weight ethanol-insoluble materials which could be solubilized readily with alkali or by treatment with proteases, and which yielded labeled glucosamine upon complete hydrolysis with HCl. Milder hydrolytic conditions released quantities of N-acetylglucosamine-(14)C plus labeled fragments of higher molecular weight. It is concluded that d-glucosamine-(14)C may be used to label specifically the amino sugar residues of plant as well as animal macromolecules. N-Acetyl-d-glucosamine acts similarly as a precursor, except that it is taken up at only about 1/10 the rate of glucosamine and hence is utilized less efficiently.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom