z-logo
open-access-imgOpen Access
Photosynthetic Properties of ac-31, a Mutant Strain of Chlamydomonas reinhardi Devoid of Chloroplast Membrane Stacking
Author(s) -
Ursula Goodenough,
Judith J. Armstrong,
R. P. Levine
Publication year - 1969
Publication title -
plant physiology
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 3.554
H-Index - 312
eISSN - 1532-2548
pISSN - 0032-0889
DOI - 10.1104/pp.44.7.1001
Subject(s) - chlamydomonas , chloroplast , photosynthesis , mutant , stacking , strain (injury) , chemistry , chloroplast membrane , botany , membrane , biology , biophysics , biochemistry , gene , thylakoid , organic chemistry , anatomy
A pale-green mutant strain of Chlamydomonas reinhardi, ac-31, is characterized by the absence of any stacking of its chloroplast membranes. The capacity for photosynthetic electron transport, phosphorylation, and CO(2) fixation in ac-31 is substantial, and it is concluded that these photosynthetic activities occur within the single membrane. The photosynthetic capacities of wild type and ac-31 as a function of increasing light intensity are compared. Saturation is attained at higher light intensities in ac-31, and the kinetics of the 2 sets of curves are distinctly different. The possibility that energy transfer is enhanced by membrane stacking is suggested by these results. The repeatedly-observed correlation between reduced stacking and disfunctional Photosystem II activities is discussed in view of the observation that ac-31 has no stacking but retains a functional Photosystem II.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom