z-logo
open-access-imgOpen Access
Studies on Polyphenol Content, Activities and Isozymes of Polyphenol Oxidase and Peroxidase During Air-Curing in Three Tobacco Types
Author(s) -
S. J. Sheen,
John T. Calvert
Publication year - 1969
Publication title -
plant physiology
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 3.554
H-Index - 312
eISSN - 1532-2548
pISSN - 0032-0889
DOI - 10.1104/pp.44.2.199
Subject(s) - peroxidase , polyphenol oxidase , chlorogenic acid , chemistry , catechol oxidase , polyphenol , curing (chemistry) , isozyme , biochemistry , food science , xanthine oxidase , enzyme , antioxidant , polymer chemistry
The change in polyphenol content in the primed leaves of burley, flue-cured, and Turkish tobaccos during air-curing was related to the activities and isozymes of polyphenol oxidase and peroxidase. The quantity of chlorogenic acid was rapidly reduced during the first week of curing. The decrease in rutin content during curing was less significant, especially when the concentration of chlorogenic acid was high in leaf tissues. This result was further confirmed by in vitro assays with partially purified tobacco polyphenol oxidase.The polyphenol oxidase activity did not differ at any stage of curing in the 3 tobaccos. When the activity was measured by the oxidation of 3,4-dihydroxyphenylalanine it rose rapidly during the first day of curing and then decreased sharply so that in the fully cured leaf only 15% activity remained. The increase in activity was not observed when chlorogenic acid was used as the substrate. A similar level of peroxidase activity was found in the 3 tobaccos before curing. Peroxidase activities increased rapidly during the first 24 hr of curing, declined thereafter, and remained highest in the flue-cured tobacco, less in the Turkish line, and least in the burley at the end of curing process.By polyacrylamide gel block electrophoresis, 10 peroxidase isozyme bands, 2 cationic and 8 anionic, appeared identical in all 3 tobaccos. When catechol replaced benzidine-2 HCl as the electron donor, 1 cationic and 2 anionic peroxidase isozymes did not form. Of interest is that the same 10 peroxidase isozyme bands also exhibited polyphenol oxidase activities when treated with 3,4-dihydroxyphenylalanine or chlorogenic acid. Results suggest that in the crude tobacco leaf extract the peroxidase and polyphenol oxidase may associate as protein complexes, and peroxidase isozymes may differ in electron-donor requirements. Isozyme patterns for both oxidases at various curing intervals differed only quantitatively.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here