z-logo
open-access-imgOpen Access
In vitro Protein Synthesis by Plastids of Phaseolus vulgaris. II. The Probable Relation Between Ribonuclease Insensitive Amino Acid Incorporation and the Presence of Intact Chloroplasts
Author(s) -
Maurice M. Margulies,
Elisabeth Gantt,
Francesco Parenti
Publication year - 1968
Publication title -
plant physiology
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 3.554
H-Index - 312
eISSN - 1532-2548
pISSN - 0032-0889
DOI - 10.1104/pp.43.4.495
Subject(s) - chloroplast , ribonuclease , phaseolus , biochemistry , incubation , s tag , biology , plastid , chloroplast stroma , amino acid , chloroplast membrane , thylakoid , botany , rna , gene
Amino acid incorporation into protein by chloroplasts from primary leaves of Phaseolus vulgaris L., var. Black Valentine is only partially inhibited by 400 mug/ml ribonuclease. The rate of incorporation, in the presence of ribonuclease, is progressively inhibited with time, and ceases after about half an hour. Preincubation of chloroplasts at 25 degrees , in the absence of ribonuclease, increases the inhibitory effect of ribonuclease on the initial rate of incorporation of amino acid into protein. Examination of electron micrographs of freshly prepared chloroplast suspensions shows that chloroplasts are largely intact. However, after incubation at 25 degrees for 1 hour the chloroplasts are disrupted, as indicated by loss of their stroma contents. It is concluded that the intact chloroplast membrane is relatively impermeable to ribonuclease. Amino acid incorporating activity probably becomes inhibited as the inside of the chloroplast is made accessible to ribonuclease by breakage of membranes during incubation at 25 degrees .

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom