z-logo
open-access-imgOpen Access
Spore Germination and Carbon Metabolism in Fusarium solani V. Changes in Anaerobic Metabolism and Related Enzyme Activities during Development
Author(s) -
Vincent W. Cochrane,
Jean Conn Cochrane
Publication year - 1966
Publication title -
plant physiology
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 3.554
H-Index - 312
eISSN - 1532-2548
pISSN - 0032-0889
DOI - 10.1104/pp.41.5.810
Subject(s) - aldolase a , pyruvate kinase , biochemistry , spore germination , biology , pyruvate decarboxylase , fructose bisphosphate aldolase , phosphoglycerate mutase , enzyme , metabolism , dehydrogenase , fructose , hexokinase , amylase , spore , glycolysis , microbiology and biotechnology , alcohol dehydrogenase
Macroconidia of Fusarium solani f. phascoli have no detectable capacity to respire glucose anaerobically; germinated spores and mycelium, on the other hand, ferment glucose, although slowly.Extracts of ungerminated spores contain hexokinase, phosphohexoisomerase, phosphofructokinase, aldolase, triose phosphate dehydrogenase, triose phosphate isomerase, phosphoglyceric kinase, enolase, phosphoglyceric mutase, pyruvate kinase, and pyruvate decarboxylase. It follows, therefore, that the appearance of fermentative capacity during spore germination cannot be ascribed to the de novo synthesis of any of these enzymes.During germination and mycelial development the specific activity of all of the enzymes named except phosphohexoisomerase and aldolase increases 2- to 8-fold. Specific activity of all of the enzymes is substantially higher than the fermentative capacity of intact cells, i.e., none is limiting to anaerobic respiration.The enzymatic assay data are consistent with a conclusion reached earlier on the basis of studies of aerobic glucose metabolism, that the process of germination involves an acceleration of pre-existing metabolic systems rather than an appearance of new pathways.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom