Hydrogenase Mediated Nitrite Reduction in Chlorella
Author(s) -
Mary Stiller
Publication year - 1966
Publication title -
plant physiology
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 3.554
H-Index - 312
eISSN - 1532-2548
pISSN - 0032-0889
DOI - 10.1104/pp.41.2.348
Subject(s) - hydrogenase , chlorella pyrenoidosa , nitrite , chemistry , ammonia , catalysis , hydrogen , chlorella , biochemistry , photosynthesis , inorganic chemistry , food science , algae , nitrate , botany , biology , organic chemistry
The assay of the hydrogenase of glucose-grown cells of Chlorella pyrenoidosa, strain 7-11-05 by means of nitrite reduction with molecular hydrogen is described. The hydrogenase of Chlorella shows maximum activity immediately after equilibration in the hydrogen atmosphere. The hydrogenase mediated reduction of nitrite to ammonia requires the presence of CO(2). However, at pH 6.4. when the reaction proceeds optimally, there is apparently sufficient retention of metabolic CO(2) to support the reaction, which goes to completion, at near maximum rates.Reduction of nitrite in the hydrogenase system when CO(2) is present results in the uptake of 3 moles of H(2) per mole of nitrite and ammonia is the product. When CO(2) is absent or limiting, ammonia is also formed from nitrite but with the uptake of less than the stoichiometric amount of H(2). It is concluded that CO(2) is essential for the uptake of H(2), and that in the absence of CO(2) internal hydrogen donors support nitrite reduction.The possibility that CO(2) exerts a catalytic effect in all reductions mediated by hydrogenase in algae is considered, and a further hypothesis, that hydrogenase arises from that portion of the photosynthetic machinery which also shows a catalytic requirement for CO(2), is proposed.
Accelerating Research
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom
Address
John Eccles HouseRobert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom