z-logo
open-access-imgOpen Access
Dehydroascorbate Reductases and Glutathione Set a Threshold for High-Light–Induced Ascorbate Accumulation
Author(s) -
Yusuke Terai,
H. Ueno,
Takahisa Ogawa,
Yoshihiro Sawa,
Atsuko Miyagi,
Maki KawaiYamada,
Takahiro Ishikawa,
Takanori Maruta
Publication year - 2020
Publication title -
plant physiology
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 3.554
H-Index - 312
eISSN - 1532-2548
pISSN - 0032-0889
DOI - 10.1104/pp.19.01556
Subject(s) - glutathione , arabidopsis , ascorbic acid , mutant , chemistry , biochemistry , arabidopsis thaliana , oxidative stress , biophysics , wild type , biology , enzyme , gene , food science
Plants require a high concentration of ascorbate as a redox buffer for survival under stress conditions, such as high light. Dehydroascorbate reductases (DHARs) are enzymes that catalyze the reduction of DHA to ascorbate using reduced glutathione (GSH) as an electron donor, allowing rapid ascorbate recycling. However, a recent study using an Arabidopsis ( Arabidopsis thaliana ) triple mutant lacking all three DHAR genes (herein called ∆ dhar ) did not find evidence for their role in ascorbate recycling under oxidative stress. To further study the function of DHARs, we generated ∆ dhar Arabidopsis plants as well as a quadruple mutant line combining ∆ dhar with an additional vtc2 mutation that causes ascorbate deficiency. Measurements of ascorbate in these mutants under low- or high-light conditions indicated that DHARs have a nonnegligible impact on full ascorbate accumulation under high light, but that they are dispensable when ascorbate concentrations are low to moderate. Because GSH itself can reduce DHA nonenzymatically, we used the pad2 mutant that contains ∼30% of the wild-type GSH level. The pad2 mutant accumulated ascorbate at a wild-type level under high light; however, when the pad2 mutation was combined with ∆ dhar , there was near-complete inhibition of high-light-dependent ascorbate accumulation. The lack of ascorbate accumulation was consistent with a marked increase in the ascorbate degradation product threonate. These findings indicate that ascorbate recycling capacity is limited in ∆ dhar pad2 plants, and that both DHAR activity and GSH content set a threshold for high-light-induced ascorbate accumulation.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom