z-logo
open-access-imgOpen Access
Putative cis-Regulatory Elements Predict Iron Deficiency Responses in Arabidopsis Roots
Author(s) -
Birte Schwarz,
Christina B. Azodi,
ShinHan Shiu,
Petra Bauer
Publication year - 2020
Publication title -
plant physiology
Language(s) - Uncategorized
Resource type - Journals
SCImago Journal Rank - 3.554
H-Index - 312
eISSN - 1532-2548
pISSN - 0032-0889
DOI - 10.1104/pp.19.00760
Subject(s) - arabidopsis , transcription factor , biology , transcriptome , arabidopsis thaliana , gene , genetics , gene regulatory network , regulation of gene expression , regulatory sequence , gene expression , computational biology , microbiology and biotechnology , mutant
Plant iron deficiency (-Fe) activates a complex regulatory network that coordinates root Fe uptake and distribution to sink tissues. In Arabidopsis ( Arabidopsis thaliana ), FER-LIKE FE DEFICIENCY-INDUCED TRANSCRIPTION FACTOR (FIT), a basic helix-loop-helix (bHLH) transcription factor (TF), regulates root Fe acquisition genes. Many other -Fe-induced genes are FIT independent, and instead regulated by other bHLH TFs and by yet unknown TFs. The cis-regulatory code, that is, the cis-regulatory elements (CREs) and their combinations that regulate plant -Fe-responses, remains largely elusive. Using Arabidopsis root transcriptome data and coexpression clustering, we identified over 100 putative CREs (pCREs) that predicted -Fe-induced gene expression in computational models. To assess pCRE properties and possible functions, we used large-scale in vitro TF binding data, positional bias, and evolutionary conservation. As one example, our approach uncovered pCREs resembling IDE1 (iron deficiency-responsive element 1), a known grass -Fe response CRE. Arabidopsis IDE1-likes were associated with FIT-dependent gene expression, more specifically with biosynthesis of Fe-chelating compounds. Thus, IDE1 seems to be conserved in grass and nongrass species. Our pCREs matched among others in vitro binding sites of B3, NAC, bZIP, and TCP TFs, which might be regulators of -Fe responses. Altogether, our findings provide a comprehensive source of cis-regulatory information for -Fe-responsive genes that advance our mechanistic understanding and inform future efforts in engineering plants with more efficient Fe uptake or transport systems.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom