z-logo
open-access-imgOpen Access
Phytochrome Coordinates with a hnRNP to Regulate Alternative Splicing via an Exonic Splicing Silencer
Author(s) -
Bou-Yun Lin,
Chueh-Ju Shih,
HsinYu Hsieh,
Hsiu-Chen Chen,
ShihLong Tu
Publication year - 2019
Publication title -
plant physiology
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 3.554
H-Index - 312
eISSN - 1532-2548
pISSN - 0032-0889
DOI - 10.1104/pp.19.00289
Subject(s) - rna splicing , exonic splicing enhancer , intron , biology , alternative splicing , phytochrome , splicing factor , sr protein , protein splicing , ribonucleoprotein , spliceosome , microbiology and biotechnology , rna binding protein , group ii intron , gene , genetics , rna , messenger rna , red light , botany
Plants perceive environmental light conditions and optimize their growth and development accordingly by regulating gene activity at multiple levels. Photoreceptors are important for light sensing and downstream gene regulation. Phytochromes, red/far-red light receptors, are believed to regulate light-responsive alternative splicing, but little is known about the underlying mechanism. Alternative splicing is primarily regulated by transacting factors, such as splicing regulators, and by cis-acting elements in precursor mRNA. In the moss Physcomitrella patens , we show that phytochrome 4 (PpPHY4) directly interacts with a splicing regulator, heterogeneous nuclear ribonucleoprotein F1 (PphnRNP-F1), in the nucleus to regulate light-responsive alternative splicing. RNA sequencing analysis revealed that PpPHY4 and PphnRNP-F1 coregulate 70% of intron retention (IR) events in response to red light. A repetitive GAA motif was identified to be an exonic splicing silencer that controls red light-responsive IR. Biochemical studies indicated that PphnRNP-F1 is recruited by the GAA motif to form RNA-protein complexes. Finally, red light elevates PphnRNP-F1 protein levels via PpPHY4, increasing levels of IR. We propose that PpPHY4 and PphnRNP-F1 regulate alternative splicing through an exonic splicing silencer to control splicing machinery activity in response to light.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom