Visualizing Embolism Propagation in Gas-Injected Leaves
Author(s) -
Uri Hochberg,
Alexandre Ponomarenko,
YongJiang Zhang,
Fulton E. Rockwell,
N. Michèle Holbrook
Publication year - 2019
Publication title -
plant physiology
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 3.554
H-Index - 312
eISSN - 1532-2548
pISSN - 0032-0889
DOI - 10.1104/pp.18.01284
Subject(s) - xylem , petiole (insect anatomy) , dehydration , air embolism , chemistry , horticulture , botany , biology , physics , biochemistry , hymenoptera , astronomy , complication
Because the xylem in leaves is thought to be at the greatest risk of cavitation, reliable and efficient methods to characterize leaf xylem vulnerability are of interest. We report a method to generate leaf xylem vulnerability curves (VCs) by gas injection. Using optical light transmission, we visualized embolism propagation in grapevine ( Vitis vinifera ) and red oak ( Quercus rubra ) leaves injected with positive gas pressure. This resulted in a rapid, stepwise reduction of transmitted light, identical to that observed during leaf dehydration, confirming that the optical method detects gas bubbles and provides insights into the air-seeding hypothesis. In red oak, xylem VCs generated using gas injection were similar to those generated using bench dehydration, but indicated 50% loss of conductivity at lower tension (∼0.4 MPa) in grapevine. In determining VC, this method eliminates the need to ascertain xylem tension, thus avoiding potential errors in water potential estimations. It is also much faster (1 h per VC). However, severing the petiole and applying high-pressure gas could affect air-seeding and the generated VC. We discuss potential artifacts arising from gas injection and recommend comparison of this method with a more standard procedure before it is assumed to be suitable for a given species.
Accelerating Research
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom
Address
John Eccles HouseRobert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom